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[1] We investigate the role of cross-section geometry in flow routing by developing an
analytical framework based on the instantaneous response function (IRF) and relationships
of river basin geomorphology. The cross-section geometry is included explicitly within the
framework by assuming a power law cross section that is, in turn, used to derive expressions
for the at-a-site hydraulic geometry. The analysis performed using the Illinois River basin
indicates that the cross-section geometry takes on different roles depending on whether
flows are in the channel or floodplain. The cross-section geometry where width dominates
over depth (width dominant), i.e., the at-a-site width-depth ratio increases with increasing
depth, tends to produce a larger network celerity and dispersion for the channel, and the
trend reverses for the high floodplain flows. We found that the cross-section geometry can
influence the relative contribution of hydrodynamic and kinematic dispersion. For the
channel, the depth-dominant cross section produces a lower hydrodynamic dispersion than
the width-dominant cross section and vice versa for the floodplain. We found that the
nonlinear dependence of the IRF on effective rainfall, expressed in the IRF time to peak and
peak flow, may vary depending on the cross-section geometry, with the nonlinearity
decreasing for the width-dominant cross sections. Additionally, the effect of cross-section
geometry on the basin response can alter the relative contribution of the stream network and
hillslopes to the basin dispersion. The derived framework has potential as an a priori tool
for incorporating channel and floodplain geometry into distributed rainfall-runoff models.

Citation: Mejia, A. I., and S. M. Reed (2011), Role of channel and floodplain cross-section geometry in the basin response, Water
Resour. Res., 47, W09518, doi:10.1029/2010WR010375.

1. Introduction
[2] In stream networks, there exists a close relationship

between cross-section form and river flows. This connection
can result in a high degree of temporal and spatial regularity
as expressed in the at-a-site and downstream hydraulic ge-
ometry relationships, respectively, of Leopold and Maddock
[1953]. This is the case despite the cross-section geometry
being shaped and influenced, in a dynamic and complex
stream network system, by fluvial processes and interacting
factors (i.e., streamflows, sediments, vegetation, and cross-
section characteristics) [Leopold and Maddock, 1953;
Schumm, 1960; Wilcock, 1971; Miller and Onesti, 1979;
Miller, 1984; Western et al., 1997; Gregory, 2006; Munee-
peerakul et al., 2007]. In this study we mean by cross-
section geometry the approximate shape of a cross section
(e.g., parabolic, triangular, etc.), while hydraulic geometry
refers exclusively to the power law relationships between
cross-section properties and river flows [Leopold and Mad-
dock, 1953]. Hydraulic geometry relationships have been
used to investigate the instantaneous response function
(IRF) of the network and basin and the response nonlinearity

[Robinson et al., 1995; Saco and Kumar, 2002a, 2002b,
2004; Paik and Kumar, 2004]. We expand and complement
these previous investigations by accounting for the role of
both channel and floodplain cross-section geometry.

[3] Saco and Kumar [2002a, 2002b] showed that hydrau-
lic geometry may be incorporated into the geomorphologic
response function, following the pioneering work of
Rinaldo et al. [1991] on geomorphic dispersion and of
Rodriguez-Iturbe and Valdés [1979] on the geomorpho-
logic instantaneous unit hydrograph (IUH), and that it can
produce an additional so-called kinematic dispersion effect.
Paik and Kumar [2004] found that hydraulic geometry can
influence the nonlinearity of the network response. These
investigations indicate that both hydraulic and stream net-
work geometry can shape the response at a shorter event
time scale [Saco and Kumar, 2002a, 2002b, 2004; Paik
and Kumar, 2004]. At longer time scales associated with
channel and floodplain formation, expressed by a wide
range of frequencies of discharge, Dodov and Foufoula-
Georgiou [2005] found streamflow variability to influence
hydraulic geometry and vice versa. Indeed, the influence of
hydraulic geometry on the network response function was
present implicitly in the early theory of the geomorphocli-
matic IUH through the kinematic wave exponent [Rodri-
guez-Iturbe et al., 1982]. In the geomorphoclimatic IUH
the explicit assumption was made of a rectangular cross-
section shape [Rodriguez-Iturbe et al., 1982]. Similarly, the
nonlinear IUH formulation of Wang et al. [1981] implied a
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wide rectangular cross section. This assumption can have
important effects on hydrograph simulation [Orlandini and
Rosso, 1998]. The implications of this assumption are
explored in this study from a more general approach. We
use analytical expressions for the at-a-site hydraulic geom-
etry that account explicitly for the cross-section form. With
this we also seek to explain further the interdependence
between hydraulic geometry and response nonlinearity
[Paik and Kumar, 2004].

[4] In addition to the cross-section geometry influencing
the response, it plays an important role in transport proc-
esses, riparian dynamics through the floodplain form, and
practical applications, such as stream restoration, flood
mapping, and discharge estimation from remote sensing
[Singh, 1996; Western et al., 1997; Nardi et al., 2006;
Muneepeerakul et al., 2007; Smith and Pavelsky, 2008]. It
is also used often as a proxy to quantify the effects of land
use change from urbanization on streams [Hammer, 1972;
Leopold et al., 2005; Gregory, 2006]. Another area where
cross-section geometry is of particular importance is in dis-
tributed rainfall-runoff and/or hydraulic modeling [Fread,
1993; Orlandini and Rosso, 1998; Orlandini, 2002; Koren
et al., 2004; Camporese et al., 2010]. For example, the dis-
tributed model employed by NOAA’s National Weather
Service [Koren et al., 2004], HL-RDHM, for operational
forecasting assumes a power law cross section. It is often
necessary in distributed models to make assumptions about
the cross-section geometry when routing flows [Fread,
1993; Orlandini and Rosso, 1998; Orlandini, 2002; Koren
et al., 2004] because of a lack of cross-sectional data at all
model nodes. Even with the availability of digital elevation
models (DEMs), assumptions are necessary because the re-
solution of the DEM may not always be sufficient to
resolve the main channel form and data used to derive
DEMs do not often include channel bathymetry for peren-
nial streams [Dodov and Foufoula-Georgiou, 2005; Nardi
et al., 2006]. Thus, part of the motivation behind this inves-
tigation is to help guide the development of routing param-
eterizations for distributed rainfall-runoff and/or hydraulic
models with sparse data. To get to this point, we first use
the IRF as a tool to characterize the impacts of parameter-
ized cross-section shapes on flow routing. Other studies
have looked at the role of cross-section geometry but not
from the perspective of the stream network and the IRF
[Fread and Lewis, 1986; Garbrecht, 1990; Myers, 1991;
Ponce and Porras, 1995; Valiani and Caleffi, 2009]. The
framework proposed in this study is novel in that it synthe-
sizes at the basin scale the role of both channel and flood-
plain cross-section geometry in the hydrologic response.
Further, this is achieved by utilizing in a novel way basin-
wide patterns of hydrogeomorphic regularity as reflected in
scaling relationships of fluvial geomorphology.

[5] This paper is organized as follows. In section 2, an an-
alytical power law model of cross-section geometry is
described and used to derive at-a-site hydraulic geometry
relationships. In section 3, the cross-section geometry is
included in the IRF using the derived at-a-site hydraulic ge-
ometry. Section 4 describes the data and conditions for a
case study application. Using the case study, in section 5, we
examine the effects of cross-section geometry on the net-
work response, the response nonlinearity, and the basin dis-
persion. Last, the conclusions are summarized in section 6.

2. Model of Cross-Section and At-a-Site
Hydraulic Geometry
2.1. Cross-Section Geometry

[6] To represent both channel and floodplain cross-
section geometry, we assume power law cross sections
[Henderson, 1966; Fread and Lewis, 1986; Garbrecht,
1990; Koren et al., 2004; Valiani and Caleffi, 2009]. The
advantage of the power law cross section is that it allows
the consideration of various cross-section forms, it has
been shown to be applicable to various hydrologic condi-
tions, and it is analytically amenable [Fread and Lewis,
1986; Garbrecht, 1990; Koren et al., 2004; Valiani and
Caleffi, 2009].

[7] For the channel (i.e., below bankfull conditions), the
power law cross section, for h ¼ 0 at the cross-section bot-
tom, � � 0, and � > 0, is defined as follows:

W ¼ �h�; 0 � h � hbf : ð1Þ

W [L] is the cross-section width at a depth h [L], � ½L1��� is
the power law coefficient, � is the power law exponent that
controls the shape of the cross section, and hbf is the depth
at bankfull. The subscript bf is used to denote bankfull con-
ditions. When � ¼ 0, the cross-section shape is rectangular.
For the range 0 < � < 1, the cross-section shape is para-
bolic. For � ¼ 1 the shape is triangular. For � > 1, the
width of the cross section increases nonlinearly with depth,
resulting in an expanding V-shaped form. We will also
refer to � as the cross-section shape factor. The power law
in (1) assumes the cross-section shape to be symmetric.

[8] We also use the power law cross section in (1) to
characterize the floodplain geometry where [Garbrecht,
1990]

Wf ¼ Wbf
�f

Wbf
h�f

f þ 1
� �

ð2Þ

and hf ¼ 0 at bankfull level. The subscript f denotes a flood-
plain value. Wbf is the cross-section width at bankfull. The
remainder terms in (2) have the same meaning as in (1) but
are defined for the floodplain only. The applicability of the
power laws (1) and (2) to river cross sections has been
demonstrated previously [e.g., Fread and Lewis, 1986;
Garbrecht, 1990; Jowett, 1998; Dingman, 2007]. For
example, Fread and Lewis [1986] used a separate power
law relationship for the channel and floodplain exactly as
we do here.

[9] By integrating (1) over dh, we obtain the following
expression for the channel cross-sectional area A [L2]:

A ¼ �

� þ 1ð Þ h
�þ1: ð3Þ

On the basis of (2), the cross-sectional area for the flood-
plain Af [L2] is then defined as follows [Garbrecht, 1990]:

Af ¼ Wbf hf
�f

Wbf �f þ 1
� � hf

�f þ 1

" #
: ð4Þ
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Additionally, we define the hydraulic depth H [L] as the ra-
tio of A to W. From (1) and (3), H is then equal to
h= 1þ �ð Þ. Figure 1 illustrates the power law cross section
and the role of �. It shows how the width-depth ratio W/H
varies as a function of depth for various cross-section shape
factors. A reasonable range for W/H in natural alluvial
stream channels is between 1 and 100 [Osterkamp et al.,
1983]. Two distinct cross-section geometry groups can be
identified in Figure 1, which will help us with our discus-
sion later on. In the first group, bounded by the range
0 < � < 1, the depth dominates over the width (i.e., W/H
decreases with increasing depth). The cross-section shapes
in this range are referred to as depth dominant. In the sec-
ond group, defined by � > 1, the opposite is true; the width
increases faster than the depth. These cross-sections shapes
are referred to as width dominant. The value � ¼ 1, where
the width and depth are equally dominant, separates the
two cross-section shape groups. The physical interpretation
of these groups is given in terms of the sediment composi-
tion of the channel [Leopold and Maddock, 1953; Schumm,
1960; Osterkamp et al., 1983; Rhoads, 1991; Kolberg and
Howard, 1995]. The depth-dominant cross sections tend to
be formed by finer, more cohesive material, and the width-
dominant cross sections tend to have a greater proportion
of sand material.

2.2. At-a-Site Hydraulic Geometry
[10] Equations (1) and (3) in combination with the Man-

ning and continuity equation are used to derive analytical at-
a-site hydraulic geometry expressions (see Appendix A for
details). The at-a-site hydraulic geometry expressions are

W ¼ a0Q b0 ; ð5Þ

H ¼ c0Q f 0 ; ð6Þ

V ¼ k0Q m0 : ð7Þ

W [L], H [L], and V [L T�1] are the water surface top
width, mean water depth, and mean velocity, respectively.
Q [L3 T�1] is the cross-section discharge. Expressions (5),
(6), and (7) correspond to (A3), (A2), and (A4), respec-
tively, in Appendix A. To derive an at-a-site expression
for the cross-section area A, (5) and (6) can be multiplied.
Expressions (5)–(7) account for the cross-section geometry
implicitly through the coefficient terms (i.e., a0, c0, and k0),
which are dependent on � and � from (1), and the expo-
nents (i.e., b0,f 0, and m0), which are dependent on �.

[11] Similar expressions to (5)–(7) were previously
derived by Dingman [2007] using a slightly different
form for (1). We extend these expressions here to include
the dependency of the hydraulic geometry coefficients on
scale by expressing �, the channel bed slope so, and the
channel roughness coefficient n as a function of drainage
area (see Appendix A for the relationships between the
at-a-site coefficients and �, so, and n). The actual scale-
dependent expressions for �, so, and n are included in
Appendix B1.

[12] For the floodplain geometry, to understand its sepa-
rate effects and allow for analytical tractability, we make
the simplifying assumptions that the channel and floodplain
cross sections act as a single unit [Bhowmik and Demissie,
1982; Buehler, 1983; Bhowmik, 1984; Woltemade and
Potter, 1994] and that the floodplain cross-sectional area is
much larger than the bankfull area [Fread and Lewis,
1986]. These assumptions may be reasonable for larger
flows, say larger than a 50 year return period [Bhowmik
and Demissie, 1982; Buehler, 1983; Bhowmik, 1984;
Woltemade and Potter, 1994], when the floodplain cross
section is dominant [Myers, 1987] and the channel-flood-
plain interactions are minor [Knight and Demetriou, 1983;
Myers, 1987]. In terms of (2) this means that the first term
in parentheses is much greater than 1, so that (2) can be
simplified to a two-parameter power law, as assumed by
Fread and Lewis [1986]. From this it follows that (4) is
also simplified to a two-parameter power law. With these

Figure 1. Representation of the power law cross section for different cross-section geometries: rectan-
gular ð� ¼ 0Þ, parabolic ð� ¼ 0:35Þ, triangular ð� ¼ 1Þ, and V shaped ð� ¼ 1:5Þ. For � < 1 and � > 1
the cross sections are classified as depth dominant and width dominant, respectively. The vertical axis is
the width-depth ratio W/H. On the basis of the channel cross-section power laws (1) and (3) the ratio is
equal to � � þ 1ð Þh��1. The horizontal axis is the hydraulic depth H normalized by the maximum
hydraulic depth Hmax.
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assumptions, we extend the application of the at-a-site rela-
tionships (5)–(7) to the floodplain geometry by replacing �
and � in the expressions in Appendix A by their floodplain
counterparts.

[13] Indeed, similar expressions to (5)–(7) were empiri-
cally derived by Bhowmik [1984] for floodplain down-
stream hydraulic geometry. Here, following a similar
approach as previously done for the channel, we use the
empirical floodplain scaling relationships proposed by
Dodov and Foufoula-Georgiou [2005] to account for the
effects of scale in floodplain hydraulic geometry. With
these relationships we obtain a scale-dependent expression
for �f (see Appendix B2).

[14] We let � and �f be spatially invariant within a basin,
which can be a reasonable assumption many times [Orlan-
dini and Rosso, 1998; Koren et al., 2004; Camporese et al.,
2010]. Hence, we only consider scale dependency in the
hydraulic geometry coefficients. This makes our approach
comparable to simple scaling [Dodov and Foufoula-
Georgiou, 2004].

3. Network Instantaneous Response Function
[15] We describe the IRF model briefly, mainly to

emphasize places where our approach differs from previous
ones [Robinson et al., 1995; Paik and Kumar, 2004], but
some repetition is unavoidable. More details about the IRF
can be found elsewhere [see, e.g., Robinson et al., 1995;
Saco and Kumar, 2002a; Paik and Kumar, 2004]. For the
IRF f(t) we use the inverse Gaussian distribution [Mesa and
Mifflin, 1986; Rinaldo et al., 1991; Robinson et al., 1995;
Saco and Kumar, 2002a; Paik and Kumar, 2004]:

f ðtÞ ¼ E½L� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�Dnt3

p exp
� E½L� � � unt
� �2

4Dnt

( )
; ð8Þ

where E½L��½L� is the mean path length of all paths � in the
network, un [L T�1] is the network celerity, and Dn [L2 T�1]
is the network dispersion.

[16] We use the scaling relationship E½L�� � A�1
d to

obtain an expression for the mean path length [Robinson
et al., 1995]. L� is the length for a given path �, and Ad [L2]
is drainage area. For un we employ the following relation-
ship:

un ¼ p0Aq0þm0

d im
0

e : ð9Þ

The derivation of (9) and the exact definition of p0, q0, and
m0 are included in Appendix C1. Here ie [L T�1] is effective
rainfall. Note that p0 depends on the cross-section parame-
ters � and �, q0 depends on �, and m0 is the at-a-site mean
velocity exponent in (7). The nonlinear relationship
un � im0

e , for a given basin size, has been indicated previ-
ously [Robinson et al., 1995; Saco and Kumar, 2002b;
Paik and Kumar, 2004]. We suggest here that this nonlin-
ear dependence may be further related to the cross-section
geometry through the relationship between m0 and � (see
Appendix A for details) :

m0 ¼ 2= 5þ 3�ð Þ: ð10Þ

[17] For the network dispersion we use the following
expression [after Saco and Kumar 2002a]:

Dn ¼ Dd þ Dk�g; ð11Þ

where Dd [L2 T�1] and Dk�g [L2 T�1] are the network
hydrodynamic and kinematic-geomorphologic dispersions,
respectively. For Dd an expression similar in form to (9) is
used (see section C2 for details) :

Dd ¼ r0As0þf 0þm0

d if
0þm0

e ; ð12Þ

where r0 depends on � and �, s0 depends on � only, and
f 0 þ m0 is the sum of the at-a-site exponents for mean
velocity and depth, respectively; f 0 is given by (see Appen-
dix A for details)

f 0 ¼ 3= 5þ 3�ð Þ: ð13Þ

Thus, the nonlinear dependence of Dd � if 0þm0
e for a given

basin size can be influenced by the cross-section geometry.
The other term in (11), Dk�g, is given by [Saco and Kumar,
2002a]

Dk�g ¼
unVarðL0�Þ

2E½L��
; ð14Þ

where VarðL0�Þ is the variance of the stretched path lengths
L0� . L0� results from the spatial variability of celerity
[Rinaldo et al., 1995; Saco and Kumar, 2002a]. We use
varðL0�Þ � A

�2

d by treating VarðL0�Þ as independent of ie.
This follows from the averaging used to estimate the net-
work celerity in section C1.

[18] To determine Dk, we subtract Dg from Dk�g [Saco
and Kumar, 2002a]. We define Dg [L2 T�1] on the basis of
the work by Snell and Sivapalan [1994],

Dg ¼
unVarðL�Þ

2E½L� �
; ð15Þ

and estimate the variance of the path lengths as
VarðL�Þ � A

�4

d [Robinson et al., 1995]. We use the separa-
tion of Dn into Dg, Dk, and Dd to detect and quantify the rel-
ative role of cross-section geometry on different flow-
routing factors. Dg is used to quantify the influence of the
stream network structure [Rinaldo et al., 1991], while Dk
and Dd are used to assess the relative importance of the spa-
tial heterogeneity of the local celerity and channel charac-
teristics, respectively.

[19] We obtain an approximate expression for the contri-
bution of the different dispersion mechanisms relative to
Dn by combining equations (9)–(15). For this we define the
dimensionless quantity � as the ratio of Dd to Dk�g. After
some manipulations, we arrive at

� ¼ Dd

Dk�g
� As0þf 0�q0��2þ�1

d if
0

e : ð16Þ
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Using �, the fraction of the different contributions to Dn is
given by

Dd

Dn
þ Dk

Dn
þ Dg

Dn
¼ �

1þ �ð Þ þ
1� �0ð Þ
1þ �ð Þ þ

�0

1þ �ð Þ ¼ 1; ð17Þ

where the ratio of Dg to Dk�g, �0, is then given by

�0 � A�4��2
d : ð18Þ

In terms of � and other previously defined variables, we
estimate the variance of the network travel time Var(Tn)
[T2] [after Rinaldo et al., 1991] as follows:

VarðTnÞ � A
�2�2ðq0þm0 Þ

d i�2m0
e 1þ �ð Þ: ð19Þ

The cross-section geometry enters into (19) through the
exponents q0 and m0 and the network dispersion, 1 þ �. We
use Var(Tn) to quantify the effects of cross-section geome-
try on the spread, or ‘‘attenuation,’’ of the response.

[20] To explore the role of cross-section geometry using
the IRF, we will let the power law cross-section coefficient
� or �f be determined by equations (B7) or (B11), respec-
tively, depending on whether flow conditions are in the
channel or floodplain. Thus, the effects of � and �f on the
network response enter into the analysis through changes in
basin size. On the other hand, the effects of the cross-sec-
tion exponent � or �f will be considered by heuristically
varying its value within a reasonable range. We will use
the dependence of the IRF hydrodynamic parameters on
drainage area and effective rainfall to investigate the effects
of cross-section geometry across scales and on flow condi-
tions, respectively. To assess more broadly the implications
of the proposed framework, we will look at how changes in
the slope-area exponent ! affect the IRF hydrodynamic
parameters.

4. Case Study
[21] The application of the IRF with parameterized cross

sections is demonstrated using the Illinois River basin, with
the main outlet chosen at Tahlequah (U.S. Geological Sur-
vey (USGS) gauge 07196500). The basin is located at the
Oklahoma-Arkansas border and has a drainage area of
approximately 2484 km2. The mean annual rainfall and
runoff coefficient for the basin are approximately 1165 mm
and 0.30, respectively. A complete description of the basin
location and characteristics is given by Smith et al. [2004]
and Reed et al. [2007]. The basin is within the same hydro-
climatic region used in a previous floodplain scaling study
[Dodov and Foufoula-Georgiou, 2005]. The stream net-
work for the Illinois River basin at approximately 100 m re-
solution was obtained from available DEM data [Smith
et al., 2004]. This basin is also selected to allow past mod-
eling results to bear on our discussion [Koren et al., 2004;
Smith et al., 2004].

[22] To assess the proposed hydraulic geometry, we
compared the analytical expressions in Appendix A
against data in the Illinois River, including the outlet
gauge and the following four interior gauges (in parenthe-
ses are the gauge number and drainage area): Kansas

(07196000, Ad ¼ 285 km2), Siloam Springs (07195430,
Ad ¼ 1489 km2), Springtown (07195800, Ad ¼ 36.8 km2),
and Watts (07195500, Ad ¼ 1645 km2). The location and
basin characteristics associated with these gauges are
given by Reed et al. [2007]. Figure 2a shows an example
of the proposed channel and floodplain relationships for
the outlet gauge. Figure 2b plots the estimated h (hanalytical)
from (A2) against the observed values (hrating) for each of
the five gauges. From Figure 2b it is seen that the proposed
analytical expressions match the USGS ratings reasonably
well. The values tend to be within the hrating 6 0.1 hrating
bound representing the likely error in hrating [Kennedy,
1984]. Further, in Figure 3 we compare the estimated ve-
locity against observed values for the gauges with velocity
data. Overall, Figure 3 shows a reasonable ability to capture
the trends in the channel and floodplain values, although
the floodplain comparison in Figures 3a and 3b is difficult
to perform given the few data that are available. In addi-
tion, we note that at Tahlequah (Figure 3d), the largest ba-
sin size considered here, the channel velocity appears to be
overestimated. This is possibly due to local variability not
captured by the average values of hydraulic geometry.

[23] The application of the IRF requires several fluvial
geomorphological empirical parameters. The parameters
and their value for the Illinois River are summarized in
Table 1. Most of the parameters can be estimated from the
literature. We estimated the bankfull ( 1,  2,  4, �1, �2,
and �4), floodplain ( 3, �3, and 	), and roughness coeffi-
cient (
 and �) parameters from previous studies [Dutnell,
2000; Koren et al., 2004; Dodov and Foufoula-Georgiou,
2005], while the parameters in E½L�� (&1 and �1), VarðL0�Þ
(&2 and �2), Lm (&3 and �3), VarðL�Þ (&4 and �4), and the
slope-area relationship (� and !) were estimated using the
DEM data.

[24] The regression equations used to estimate the scal-
ing relationships for E½L��, VarðL0�Þ, Lm, and VarðL�Þ
yielded R2 values of 0.97, 0.96, 0.94, and 0.96, respec-
tively. The coefficient &2 and the exponent �2 used to deter-
mine VarðL0�Þ were found to be only weakly dependent on
� and to vary little between channel and floodplain. Thus,
to simplify our discussion, the single set of values shown in
Table 1 was adopted. The single values selected correspond
to the value of � implied by the average of the at-a-site
exponent for mean velocity of Leopold and Maddock
[1953]. The parameters in the slope-area relationship were
estimated following the approach of Tarboton et al. [1989].

[25] Furthermore, on the basis of the analysis of Oster-
kamp et al. [1983], the influence of the cross-section geom-
etry, through the ratio W/H, on the bankfull exponent �1 in
Abf � A�1

d (equation (B4)) tends to be small. Thus, we let
�1 be constant. The exponent �2 in Qbf � A�2

d (equation
(B5)) has a complex underlying structure. It has been tied
to first order to macroscopic factors such as the stream net-
work and the rainfall characteristics [Mantilla et al., 2006]
but not to the cross-section form. Therefore we assume �2 to
be constant within a basin as well. The exponent � in
n � A�d could also be potentially affected by �. However,
the estimation of n for the entire stream network can be quite
uncertain [Sturm, 2001; Orlandini, 2002], resulting many
times in n � A�d having a low predictability [Orlandini,
2002]. Taking this into consideration, we foresee that � will
be weakly related to � . Hence, we assume � to be constant.
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Figure 3. Comparison of the proposed V � Q m0 relationship for both channel (Vchannel) and floodplain
(Vfloodplain) against measured values at the following USGS gauges: (a) Springtown (Ad ¼ 36.8 km2), (b)
Kansas (Ad ¼ 285 km2), (c) Siloam Springs (Ad ¼ 1489 km2), and (d) Tahlequah (Ad ¼ 2484 km2). Here
� ¼ 0:35 for the channel and 1.5 for the floodplain. The discontinuity between Vchannel and Vfloodplain is
set at the bankfull discharge.

Figure 2. (a) Comparison of the proposed h � Q f 0 relationship for both channel (hchannel) and floodplain
(hfloodplain) against the U.S. Geological Survey rating (hrating) and gauged values (denoted by circles) at
Tahlequah. (b) Measured rating (hrating) versus proposed (hanalytical) for the outlet and four interior gauges
in the Illinois River. The dashed lines represent a 10% error in the ratings (hrating 6 0.1 hrating). In all cases
shown, � ¼ 0:35 for the channel and 1.5 for the floodplain.
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[26] To evaluate the effects of channel cross-section ge-
ometry across basin sizes, we assume a spatially uniform
effective rainfall of 0.17 mm h�1. This value of ie results in
an instantaneous streamflow that is approximately just at

bankfull at the main basin outlet. It was estimated by divid-
ing the bankfull flow by the drainage area at the main basin
outlet. For the floodplain we assume a value of ie ¼ 4.7
mm h�1. This value of ie was approximated by dividing the
100 year peak flow over the drainage area at the main out-
let. This results in above-bankfull flow conditions for the
entire range of drainage areas that we consider here. The
peak flow for a given return period was obtained from
Tortorelli [1997].

5. Results and Discussion
5.1. Network Hydrodynamic Parameters

[27] The network celerity un and hydrodynamic disper-
sion Dd are shown in Figures 4a and 4b, respectively, as a
function of basin size for different channel cross-section
geometries, as specified by �. In Figure 4a, the trend for un

is to increase as � increases across basin sizes. This means
that for the expanding V-shaped channel cross section (i.e.,
the width-dominant cross sections), un is faster than for the
rectangular and parabolic channel cross sections (i.e., the
depth-dominant cross sections). This is the case here
because for low flows the V-shaped cross section is narrow
relative to the bankfull width. In terms of the power law
cross section in (1) this is seen as W/H!0 as h!0 for
� > 1, while for � < 1, W/H!1 as h!0. This trend also
produces a larger coefficient p0 in (9) as � increases. Con-
sistently, the trend in the channel for Dd is similar to the
trend experienced by un. Dd tends to be larger for the

Figure 4. Network (a) celerity un and (b) hydrodynamic dispersion Dd for the channel (ie ¼ 0.17 mm h�1)
as a function of drainage area. Network (c) celerity and (d) hydrodynamic dispersion for the floodplain
(ie ¼ 4.7 mm h�1). Here � represents different cross-section geometries: rectangular ð� ¼ 0Þ, parabolic
ð� ¼ 0:35Þ, triangular ð� ¼ 1Þ, and V shaped ð� ¼ 1:5Þ.

Table 1. Summary of the Coefficients and Exponents in the Em-
pirical Geomorphological Relationships Employed

Parameter Symbol Value

Expected value of path lengths coefficient &1 0.94
Expected value of path lengths exponent �1 0.54
Variance of stretched path lengths coefficient &2 0.12
Variance of stretched path lengths exponent �2 1.12
Main stream lengths coefficient &3 1.062
Main stream lengths exponent �3 0.6
Variance of path lengths coefficient &4 0.092
Variance of path lengths exponent �4 1.13
Bankfull cross-section coefficienta  1 2.78
Bankfull cross-section exponenta �1 0.42
Bankfull discharge coefficienta  2 3.19
Bankfull discharge exponenta �2 0.46
Bankfull depth coefficienta  4 0.77
Bankfull depth exponenta �4 0.089
Floodplain width coefficient  3 5
Floodplain width exponentb �3 0.3
Floodplain depth coefficientb 	 0.6
Roughness coefficientc 
 0.065
Roughness exponentc � �0.084
Slope-area coefficient � 0.015
Slope-area exponent ! �0.31

aValues obtained from Dutnell [2000].
bValues estimated from Dodov and Foufoula-Georgiou [2005].
cValues estimated from Koren et al. [2004].
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width-dominant channel cross sections, as illustrated in
Figure 4b.

[28] The effect of channel geometry on the hydrody-
namic parameters is also influenced by the bankfull scaling
relationships, equations (B4) and (B5). These are used to
quantify the spatial variability of the channel cross-section
coefficient � (see section B1). Specifically, (B4) and (B5)
delimit the spatial extent of channel flow conditions. They
also, on the basis of continuity, have the effect of fixing the
channel velocity field at bankfull. This contributes in this
case to the convergence at the main outlet of the channel un

and Dd in Figures 4a and 4b (top right corner), respectively,
for the different values of �.

[29] For the floodplain geometry, the width-dominant
cross section tends to produce a lower un (see Figure 4c)
and Dd (see Figure 4d) across basin sizes. Thus, in terms of
�, for the floodplain cross section the trend for un and Dd

reverses when compared to the channel cross section. For
example, if the channel and floodplain are both character-
ized by a depth-dominant cross section, then the channel
cross section will tend to decrease the network celerity rela-
tive to the same flow condition in a width-dominant cross
section, while for a given high-flow condition the depth-
dominant floodplain cross section will tend to increase the
network celerity relative to the width-dominant cross sec-
tion. Conceivably, this could have a controlling effect on
the range of variability of the network hydrodynamic pa-
rameters. In this case, the range would be greatest when
both the channel and floodplain are characterized by depth-
dominant cross sections. The floodplain scaling relation-
ships (B8) and (B9) influence how fast the floodplain cross
section grows with basin size [Bhowmik, 1984; Dodov and
Foufoula-Georgiou, 2005; Nardi et al., 2006]. They help
specify in this case the size of the floodplain along the
stream network through the coefficient �f .

[30] Alternatively, from Figure 4, we interpret the
dynamic influence of cross-section geometry on the hydro-
dynamic parameters in terms of storage or, in contradistinc-
tion, conveyance. The depth-dominant channel cross
section may be seen as acting as storage for the very low
flows, relative to the larger celerity of the width-dominant
channel cross section. As the flow approaches bankfull the
channel geometry acts as conveyance. This is because the
network celerity in the depth-dominant cross sections (i.e.,
the cross sections with the lower celerity) tends to increase
at a faster rate with increasing flow. This results, as illus-
trated in Figure 4a, in the network celerity being approxi-
mately the same for the different cross-section forms near
the main basin outlet. On the other hand, when the flow is
high and the floodplain geometry is dominant, the cross-
section geometry can play two different roles. The flood-
plain with depth-dominant cross section increases the net-
work celerity, acting more as conveyance, while the
floodplain characterized by width-dominant cross sections
slows the network celerity, prolonging the storage effect.

[31] Using the slope-area exponent ! and the exponents
q0 and s0 in un and Dd, respectively, we assess more broadly
the implications of the proposed parameterization. For the
channel, q0 does not depend explicitly on !. However,
through �1 the slope-area exponent ! can potentially affect
the channel q0. The interrelationship between �1 and ! was
indicated, quite generally, by Molnár and Ram�ırez [1998].

What matters here is that the previous means that the chan-
nel q0 can vary between basins depending on the basin-
wide values of !, �1, and �2. For example, when �2 is larger
than the value used here, the channel un will be greater for
a given basin size. The effect of ! on the channel is more
evident in the coefficient for the at-a-site expression V �
Q m0 (equation (A4)). In (A4) it is straightforward to recog-
nize that for a given basin size, as ! decreases, or so is
smaller, the velocity slows down. Thus, as the terrain
becomes flat, V and hence un tend to decrease. The opposite
behavior is expected for un when the terrain is steeper. The
effect of ! on the floodplain un is similar ; as ! decreases,
q0 tends to decrease as well, resulting in lower floodplain un

values.
[32] The effect of ! on Dd through the exponent s0 is the

same for the channel and floodplain; Dd tends to increase
as ! decreases. Thus, in basins where ! is less than in the
Illinois River basin, we expect a lower un and a higher Dd

value. Nonetheless, the net effect of changes in q0 and s0 on
un and Dd, respectively, will depend on the interplay
between ! and the other exponents affecting our estimate
of q0 and s0. However, once these other exponents are
defined for a given basin, relative to these values, the trends
shown in Figure 4 will be similar.

[33] Viewed as an order of magnitude estimate, our anal-
ysis of the network hydrodynamic parameters illustrated in
Figure 4 indicates that the channel and floodplain cross-
section geometry have an effect on the dynamics of the
network response. We will analyze this effect further in
sections 5.2–5.4.

5.2. Network Dispersion and Variance of f(t)
[34] Figure 5a shows the fraction of the contribution of

the three dispersion mechanisms (i.e., geomorphic (Dg), ki-
nematic (Dk), and hydrodynamic (Dd)) as a function of
drainage area for two channel cross-section geometries
(i.e., � ¼ 0:35 and � ¼ 1:5). The different dispersion
mechanisms are estimated using equation (17). In Figure
5a, Dg has a dominant influence over both Dd and Dk, as
indicated previously [Rinaldo et al., 1991; Saco and
Kumar, 2002a, 2002b]. Further, Dg is affected little by the
channel cross-section geometry, while Dd and Dk show a
more noticeable effect. The trend is for Dd to increase and
Dk to decrease as the basin size increases or as flow condi-
tions approach bankfull. In terms of �, the main effect is
for the width-dominant cross section to have a greater Dd

and a smaller Dk across basin sizes. On the basis of our
interpretation of Dd and Dk, this indicates that the spatial
variability of channel characteristics becomes more impor-
tant for the width-dominant cross sections.

[35] For the floodplain, a similar comparison of the dis-
persion mechanisms is shown in Figure 5b. In Figure 5b it
is seen that Dg continues to have a dominant effect over
both Dd and Dk across basin sizes. However, two main dif-
ferences with respect to the channel cross section are appa-
rent. First, Dd continues to increase across basin sizes, but
now the depth-dominant cross section results in a larger Dd.
Second, for the very high floodplain flows, Dd can become
greater than Dk. This suggests that only in situations of
extreme flood and relatively large drainage area can the
spatial variability of the floodplain geometry become more
dominant than that of the celerity. Thus, in terms of Dn, the
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channel and floodplain cross-section geometry influence
the relative contribution of Dd and Dk. The differences
between the channel and floodplain geometry are mainly
reflected in Dd.

[36] To examine the combined effects of the network ce-
lerity and dispersion on travel times, we plot in Figures 6a
and 6b the normalized variance of the network travel time
Var(Tn)/hTni2 for the channel and floodplain, respectively.
The variance is estimated using equation (19), and the nor-
malizing quantity is estimated as the square of E½L�� over
un. The normalized variance can be seen as quantifying the
relative attenuation of the response. In fact, it is equivalent
to the ratio of the network dispersion over the advection or,
namely, the inverse of the network Péclet number. There-
fore, a large Var(Tn)/hTni2 indicates a low Péclet number
and a more dispersed response, and a low Var(Tn)/hTni2
corresponds to a high Péclet number and a more peaked
response. Figures 6a and 6b show that the normalized var-
iance is greater for the depth-dominant cross sections in
both the channel and floodplain, respectively (i.e., Var(Tn)/
hTni2 increases as � decreases across basin sizes). Addi-
tionally, both the channel and floodplain have a comparable
dispersive influence on the response in terms of the magni-
tude of Var(Tn)/hTni2. Thus, the channel and floodplain ge-
ometry take on similar roles in terms of Var(Tn)/hTni2. The
only difference between the channel and floodplain in Fig-
ure 6 is that the normalized variance shows a somewhat
stronger sensitivity to the floodplain geometry. The range
of Var(Tn)/hTni2 tends to be greater for the floodplain at a

given basin size, and it tends to widen as the basin size
increases. This means that the floodplain geometry has a
relatively greater ability to influence the response’s
attenuation.

[37] More broadly, in basins where the slope-area expo-
nent is less than in the Illinois River basin, the trends
shown in Figures 5 and 6 will be similar. However, Dd will
tend to play a larger role relative to the other dispersion
mechanisms (i.e., Dg and Dk) since a lower ! increases the
value of Dd. In terms of Figure 5, this means that Dd will
take a larger percent of the total contribution across basin
sizes. For Var(Tn)/hTni2 in Figure 6 this means that the
response will be less peaked across basin sizes as !
decreases for a given flow condition. Thus, as one might
expect, in basins with flat terrain where ! is small the
response tends to be more attenuated relative to the same
flow condition in a steep terrain where ! is larger.

[38] Despite the normalized variance being similar in
Figures 6a and 6b, ultimately, the effects of the channel
and floodplain geometry on the IRF are different owing to
the different flow frequencies associated with them. This is
illustrated in Figure 7 using a hypothetical channel sce-
nario. In Figure 7 we allow the channel cross section to
hypothetically convey the floodplain flow. With this we
want to emphasize three main points. First, relative to the
channel geometry, the floodplain increases the variance of
the network travel time and attenuates the response. Sec-
ond, as a corollary, neglecting the effects of floodplain ge-
ometry can have a pronounced effect on the network
response for the high flows. For example, contrasting in
Figure 7 the IRFs for the Illinois River (i.e., � ¼ 0:35 and
�f ¼ 1:5), the peak of the IRF is approximately twice as
large if the channel hydraulic geometry is employed instead
of the floodplain (the peak is 0.15 h�1 for the channel and

Figure 6. Normalized variance of the network travel time
Var(Tn)/hTni2 for the (a) channel (ie ¼ 0.17 mm h�1) and
(b) floodplain (ie ¼ 4.7 mm h�1) as a function of drainage
area.

Figure 5. Contribution of the different network disper-
sion mechanisms (geomorphic (Dg), kinematic (Dk), and
hydrodynamic (Dd)) for the (a) channel (ie ¼ 0.17 mm h�1)
and (b) floodplain (ie ¼ 4.7 mm h�1) as a function of drain-
age area. Dg is shown in black, Dk is in dark gray, and Dd is
in light gray. Here � ¼ 0:35 (circles) and � ¼ 1:5 (dia-
monds) are for rectangular and V-shaped cross-section
forms, respectively.
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0.28 h�1 for the floodplain). Third, the channel geometry
tends to approach the floodplain response as � increases. In
our case, the IRF for the channel with � ¼ 1 and the IRF for
the floodplain with the same � are nearly coincident in
Figure 7. This suggests further that the width-dominant cross
section may be generally effective for capturing high-flow
dynamics under the single power law channel cross section.
Conceivably, the latter may be a useful compensating mech-
anism in modeling situations where the channel and flood-
plain are not explicitly distinguished. Our experience with
estimating parameters for the single power law approach
used in HL-RDHM is consistent with this observation.
When we estimate shapes using USGS flow measurements
and emphasizing high flows, we find � > 1 in most cases.

5.3. Network Response Nonlinearity
[39] We follow the approach of Paik and Kumar [2004]

to determine the time to peak tp and peak flow f(t ¼ tp), or
simply f(tp), of the IRF. The complete expressions for tp
and f(tp) are omitted since they can be found elsewhere [see
Paik and Kumar, 2004]. What matters for our purposes is
that using (8), tp and f(tp) can be written for a given basin
size as follows:

tp � i�m0
e ; ð20Þ

f ðtpÞ � im0
e : ð21Þ

Through the at-a-site mean velocity exponent m0, expres-
sions (20) and (21) are directly linked to the cross-section
geometry. Using the floodplain hydraulic geometry [Bhow-
mik, 1984; Nardi et al., 2006], (20) and (21) can be extended
to the floodplain. The value of the coefficients in (20) and
(21) will differ between the channel and floodplain geometry
because of the different scaling relationships employed in
estimating � and �f .

[40] Figure 8a illustrates the behavior of (20) for the
channel at the main basin outlet. From Figure 8a, tp is
smaller for the width-dominant cross sections for increasing

effective rainfall, as expected from the effect of cross-sec-
tion geometry on the IRF parameters reported earlier. Con-
sistent with the effects of � on tp, f(tp) is larger for the
width-dominant cross sections, as illustrated in Figure 8b.
Thus, the width-dominant cross section results in a more
peaked channel response. It is straightforward to imply that
for the floodplain, on the basis of our previous results, the
opposite is the case here (i.e., the response has a shorter tp
and larger f(tp) when � < 1). The floodplain response is
then more peaked for the depth-dominant cross section.

[41] Figure 8 also indicates that the rate of change of tp
and f(tp) with ie decreases when � increases for both the
channel and floodplain. This means that the response nonli-
nearity, as manifested in the dependence of tp and f(tp) on ie
[Wang et al., 1981; Paik and Kumar, 2004], tends to
decrease as � increases since this reduces the value of the
exponent m0. For example, if we let the channel have a
value of � ¼ 0:35 (the value implied by the average expo-
nents of Leopold and Maddock [1953]) and the floodplain
have a value of � > 1, one expects a more linear response
for the floodplain than the channel. The latter rests on the
condition, based on continuity and the effect of � on the
hydraulic geometry exponents, that b0 increases and f 0

decreases for the floodplain. Indeed, the condition of a
lower f 0 for the floodplain is often manifested in rating
curves (i.e., the at-a-site relationship between stage and
discharge), requiring the application of a separate stage-
discharge floodplain power law [Kennedy, 1984]. In our
case at hand, what matters is that a lower f 0 implies a larger
� and consequently a larger b0 for the floodplain. This sug-
gests that the floodplain geometry can interact with the
flow to reduce the nonlinear dependency described by (20)
and (21). The controlling mechanism for this seems to be
the increase in b0 since b0 is more sensitive to increases in �
than f 0. Taking, as a measure of relative sensitivity, the ra-
tio of the absolute value of the derivative of b0 and f 0 with
respect to � (i.e., jdb0=d�j=jdf 0=d�j) results in a value of
5/3, indicating b0 is more sensitive to changes in �.

5.4. Basin Dispersion
[42] We use the basin dispersion Db in this section to

examine the effect of cross-section geometry on the relative
influence of hillslopes and the stream network. For Db we
employ the following expression [Robinson et al., 1995;
Botter and Rinaldo, 2003; D’Odorico and Rigon, 2003]:

Db ¼ Dbn þ Dbh ¼ u3
b

VarðTnÞ þ VarðThÞ½ �
2 E½L� � þ E½Lh�
� � : ð22Þ

Dbn and Dbh partition Db into a stream network and a hill-
slope contribution, respectively, on the basis of Var(Tn) and
the hillslope variance Var(Th). Here ub is estimated as the
weighted sum of un and the hillslope velocity [Robinson
et al., 1995]. The weighting is done using E½L�� and the
mean hillslope length E[Lh]. Through ub it is possible for the
stream cross-section geometry to influence Dbh. Hence, Dbh

represents the relative influence of hillslopes on the aggre-
gated basin-wide dispersion, i.e., the effect of hillslopes at
the basin outlet. Further, equation (22) assumes that the hill-
slope and network paths are independent [van der Tak and
Bras, 1990; Robinson et al., 1995; Botter and Rinaldo,
2003; D’Odorico and Rigon, 2003].

Figure 7. Effect of floodplain cross-section geometry on
the IRF with ie ¼ 4.7 mm h�1 (gray dashed lines). In a hy-
pothetical scenario, the IRFs for the channel cross sections
shown are estimated using the same ie value as in the flood-
plain (black dashed lines).
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[43] In equation (22), E[Lh] is determined from the aver-
age value of drainage density [van der Tak and Bras, 1990;
Rodriguez-Iturbe and Rinaldo, 1997], which was estimated
to be 2.5 km�1 for the hydroclimatic region of this study by
Koren et al. [2004]. The hillslope velocity is assumed to be
characterized by a quenched exponential distribution [Bot-
ter and Rinaldo, 2003], with a mean value of 0.008 m s�1

and a minimum threshold of 0.002 m s�1. This velocity
scale corresponds approximately to the one implied by the
parameter used to model fast subsurface runoff in a previ-
ous study of the Illinois River using HL-RDHM [Koren
et al., 2004]. We use the hillslope subsurface velocity
model for both low- and high-flow conditions. Var(Th) is
estimated from the hillslope velocity model and E[Lh].

[44] Figure 9 shows the dispersion separated into network
and hillslope contributions as a function of drainage area for
the channel (Figure 9a) and floodplain (Figure 9b). In Figures
9a and 9b, the cross-section geometry is shown to influence
the quantification and partitioning of the basin dispersion
into hillslope and network contributions. This influence is
more pronounced for the floodplain, where the cross-section
geometry can affect the extent of the control of hillslope dis-
persion across basin sizes. For example, in Figure 9b, the
stream network becomes equally dominant (i.e., contributes
the same as the hillslope dispersion to the total dispersion) at
approximately the main basin outlet for the V-shaped cross
section (� ¼ 1:5), whereas for the parabolic cross section
(� ¼ 0:35) the hillslopes contribute more to Db across basin
sizes. In physical terms, the widening of the floodplain cross
section, expressed through the power law cross section with
increasing � and the scaling relationships (B8) and (B9),

when compared to the channel cross section, tends to slow
the response (i.e., decrease the network celerity) and increase
the attenuation (i.e., increase the variance of the network
travel time). Both of these effects in this case can decrease
the spatial extent of the relative influence of hillslopes on the
basin dispersion for the high floodplain flows.

6. Summary and Conclusions
[45] The IRF was used to examine the role of cross-

section geometry on the basin response because it provides
a unified framework for assessing the influence of different
flow-routing factors, the effects of the spatial variability of
hydrodynamic parameters, and the response nonlinearity.
The cross-section geometry was included in the IRF by
assuming a power law cross section that was, in turn, used
to obtain analytical expressions for the at-a-site hydraulic
geometry. To account for the spatial variability of the at-a-
site hydraulic geometry, the coefficients in these expres-
sions were related to the drainage area. These coefficients
were also used to differentiate between channel and flood-
plain cross sections, with the support of fluvial geomorpho-
logical scaling relationships and simplifying assumptions
about the channel-floodplain interaction.

[46] On the basis of the analysis performed using data
for the Illinois River basin, we found for the channel that
the depth-dominant cross sections tend to produce a lower
network celerity and hydrodynamic dispersion than width-
dominant cross sections, whereas in the floodplain we
found that this trend reverses, particularly for the higher
flows. For the network dispersion, geomorphic dispersion

Figure 8. IRF time to peak tp and peak flow f(tp) as a function of effective rainfall ie at the main basin
outlet for the channel cross-section geometry. The lower bound for ie is selected to be arbitrarily very
small. The upper bound is determined by dividing the bankfull flow over the drainage area at the main
basin outlet.
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was found to be dominant and affected little by the cross-
section geometry. However, in terms of the relative kine-
matic and hydrodynamic contributions to the network
dispersion, the cross-section geometry can have a noticea-
ble effect. The width-dominant cross sections tend to
decrease the kinematic contribution for both the channel
and floodplain, while the depth-dominant cross sections
tend to decrease the hydrodynamic contribution for the
channel and vice versa for the floodplain. In addition,
because the kinematic dispersion tends to decrease across
basin sizes while the hydrodynamic increases, we suggest
that the spatial variability of channel characteristics is more
important for width-dominant cross sections in the channel
and depth-dominant in the floodplain. This may help to
identify those situations where cross section data for the
stream network is most important.

[47] In terms of the normalized variance of the network
travel time, we found the channel and floodplain cross-section
geometries play a similar role. Both have a comparable net-
work dispersive effect relative to advection. Also, the
depth-dominant cross sections produce the greatest normal-
ized variance in both. However, the normalized variance
shows a somewhat stronger sensitivity to the floodplain ge-
ometry. The nonlinear dependence of the response was
found to decrease for the width-dominant cross sections by
reducing the value of the at-a-site mean velocity exponent.
Further, we suggest that the at-a-site rate of increase of the

floodplain width with discharge may act as a linearizing
mechanism at high flows.

[48] For the basin response the magnitude and partition
of the basin dispersion into hillslope and network compo-
nents may be influenced by the cross-section geometry. We
found this to be more relevant for the floodplain, where
depending on the cross-section geometry, the scale at
which the hillslope dispersive effect becomes less dominant
than the network dispersive effect may vary. The trend is
for the width-dominant cross section to reduce the influ-
ence of the hillslope dispersive effect the most.

[49] Overall, we find manifested through the IRF notable
differences between the channel and floodplain cross sec-
tions. We also find that the specific form of the channel or
floodplain cross section can have an important influence on
the response.

Appendix A: Analytical Representation of the
At-a-Site Hydraulic Geometry

[50] To derive the at-a-site hydraulic geometry, we
assume that the hydraulic radius in the Manning equation
can be approximated by the hydraulic depth H, which is
defined as A/W. This assumption may be reasonable for riv-
ers [Leopold and Maddock, 1953; Wang et al., 1981;
Fread and Lewis, 1986; Orlandini, 2002; Dingman, 2007],
but we recognize that it becomes more useful as the basin
size increases. With this we write the combined Manning
and continuity equation as follows:

Q ¼ s1=2
o

n
A5=2

W

� �2=3

; ðA1Þ

where so is local channel bed slope and n is the roughness
coefficient. Substituting (1) and (3) into (A1), simplifying,
and inverting the expression to find h � Q f 0 , we arrive at

h ¼ nð� þ 1Þ
5=3

s1=2
o �

" # 3
5þ3�

Q
3

5þ3�; ðA2Þ

where f 0 ¼ 3=ð5þ 3�Þ. Equation (A2) is divided through
by (� þ 1) to obtain an expression for H � Q f 0 . Also, by
substituting (A2) into (1) and simplifying, the following
expression can be obtained for W � Q b0 :

W ¼ � 5
5þ3�

nð� þ 1Þ5=3

s1=2
o

" # 3�
5þ3�

Q
3�

5þ3�; ðA3Þ

where b0 ¼ 3�=ð5þ 3�Þ. Similarly, noting that A/W is
equal to h/(� þ 1), substituting (A2) into (A1), after divid-
ing through by A, yields an expression for V � Q m0 :

V ¼ 1

� þ 1ð Þ��
h i2

s3=2
o

n3

� �1þ�
8><
>:

9>=
>;

1
5þ3�

Q
2

5þ3�; ðA4Þ

where m0 ¼ 2=ð5þ 3�Þ. Equations (A2), (A3), and (A4)
are written in compact form in section 2.2 so that they

Figure 9. Effect of cross-section geometry on the basin
dispersion Db for the (a) channel (ie ¼ 0.17 mm h�1) and
(b) floodplain (ie ¼ 4.7 mm h�1) across basin sizes. Db is
separated into network (Dbn) and hillslope (Dbh) dispersion
on the basis of the network and hillslope variance. Db is
shown in black, Dbn is in dark gray, and Dbh is in light
gray.
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appear just as the at-a-site expressions of Leopold and
Maddock [1953].

Appendix B: Scale Effects on the Coefficient of
the Power Law Cross Section

B1. Channel Cross-Section Coefficient a

[51] To find an expression for �, H (i.e., h=ð� þ 1Þ) is
multiplied by W in (A3) to obtain A � Q f 0þb0 , where h is
given by (A2) and A [L2] is the cross-sectional area. Then
� is isolated from the expression A � Q f 0þb0 on the basis of
reference values (bankfull conditions) for A and Q [Orlan-
dini and Rosso, 1998] as follows:

� ¼ 1

� þ 1ð Þ�
A
�þ5=3
�þ1

bf s1=2
o

Qbf n

0
@

1
A

3 �þ1ð Þ
2

: ðB1Þ

For the local slope and roughness coefficient the following
empirical relationships are used:

so ¼ �A!d ; ðB2Þ

n ¼ 
A�d : ðB3Þ

Ad [L2] is drainage area. Equation (B2) is the well-known
slope-area relationship [see, e.g., Tarboton et al., 1989;
Rodriguez-Iturbe and Rinaldo, 1997]. Equation (B3) has
been suggested by various researchers [Leopold and Mad-
dock, 1953; Osterkamp et al., 1983; Orlandini, 2002], and
we use the expression reported by Koren et al. [2004]. The
bankfull relationships for Abf and Qbf are

Abf ¼  1A�1
d ; ðB4Þ

Qbf ¼  2A�2
d : ðB5Þ

Inserting (B2), (B3), (B4), and (B5) into (B1) yields the fol-
lowing expression for � � A�

0

d :

� ¼ � þ 1ð Þ�� �1=2 
ð1�m0Þ�1

1


 2

 !3
2 1þ�ð Þ

A
3 �þ1ð Þ

2

d

� �1
2!��þ�1ð1�m0Þ�1��2

;

ðB6Þ

which we write in compact form as follows:

� ¼ �0A�
0

d : ðB7Þ

B2. Floodplain Cross-Section Coefficient af

[52] To determine �f � A
�0f
d , we make use of the follow-

ing two floodplain relationships [Dodov and Foufoula-
Georgiou, 2004]:

Wf ¼  3A�3
d ; ðB8Þ

hf ¼ 	hbf ; ðB9Þ

where  3, �3, and 	 are empirical parameters [see Dodov
and Foufoula-Georgiou, 2005]. Here hbf [L] is bankfull
depth and is given by

hbf ¼  4A�4
d : ðB10Þ

Solving for �f in the simplified floodplain power law (i.e.,
Wf ¼ �f hf

�f ) and inserting (B8), (B9), and (B10), we
arrive at

�f ¼  3 	 4ð Þ��f A�3��4�f

d : ðB11Þ

In compact form we write (B11) as

�f ¼ �0f A
�0f
d : ðB12Þ

Appendix C: Network Hydrodynamic
Parameters

C1. Network Celerity
[53] The local celerity ul [L T�1] is given by

ul ¼
dQ
dA

: ðC1Þ

Using A � Q f 0þb0 and (C1), we obtain an expression for
u�1

l . Then, (B2), (B3), and (B7) are substituted into u�1
l ; af-

ter inversion, we arrive at

ul ¼
1

f 0 1þ �ð Þf 0 1þ5
3�ð Þþm0

1

�0ð Þ2
�1=2




� �3 1þ�ð Þ" #m0
2

� Am0 3
2 1þ�ð Þ !

2��ð Þ��0½ �
d Q m0 :

ðC2Þ

In compact form we write (C2) as

ul ¼ pAq0

d Q m0 : ðC3Þ

For the channel, the exponent q0 can be simplified to
�2 1� m0ð Þ � �1. We assume equilibrium conditions for Q
(i.e., Q ¼ ieAd) to include the dependence of ul on effective
rainfall [Wang et al., 1981; Rodriguez-Iturbe et al., 1982;
Robinson et al., 1995]. To obtain a network value for the
celerity, a similar harmonic average as given by Robinson
et al. [1995] is performed. The harmonic average is per-
formed once, as this was found to match more closely the
numerical average based on the area function. After the
averaging, the network celerity is given by

un ¼ 1� q0 þ m0ð Þ
�3

� �
pAq0þm0

d im
0

e : ðC4Þ

To write (C4) in compact form, we just let the coefficient
term be equal to p0. Here �3 enters (C4) as part of the aver-
aging; �3 is the exponent obtained from the scaling of the
mainstream length (i.e., Lm � A�3

d ).
[54] A similar approach is followed to obtain un for a

floodplain cross section. For the floodplain, the parameters
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�, �0, and �0 in (C2) are simply replaced by �f , �0f , and �0f ,
respectively.

C2. Network Hydrodynamic Dispersion
[55] The local dispersion Dl [L2 T�1] is given by

Dl ¼
Q

2Wso
: ðC5Þ

By substituting (A3), (B3), and (B7) into (C5), we arrive at

Dl ¼
1
2

1þ �ð Þ�� �0ð Þ�1

�
10þ3�

10 

3
5�

" #f 0þm0

A
f 0 �5

3�
0�!6 10þ3�ð Þ���½ �

d Q f 0þm0 : ðC6Þ

In compact form we write (C6) as

Dl ¼ rAs0
d Q f 0þm0 : ðC7Þ

Under equilibrium conditions and performing an arithmetic
average [see Robinson et al., 1995], the network hydrody-
namic dispersion is given by

Dd ¼ 1þ s0 þ f 0 þ m0ð Þ
�3

� ��1

rAs0þf 0þm0

d if 0þm0
e : ðC8Þ

To write (C8) in compact form we just let the coefficient
term be equal to r0. To account for the floodplain geometry
in the network hydrodynamic dispersion, we can replace �,
�0, and �0 in (C6) by �f , �0f , and �0f , respectively.
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Rodriguez-Iturbe, I., M. González-Sanabria, and R. Bras (1982), A geomor-
phoclimatic theory of the instantaneous unit hydrograph, Water Resour.
Res., 18(4), 877–886, doi:10.1029/WR018i004p00877.

Saco, P. M., and P. Kumar (2002a), Kinematic dispersion in stream net-
works: 1. Coupling hydraulic and network geometry, Water Resour.
Res., 38(11), 1244, doi:10.1029/2001WR000695.

Saco, P. M., and P. Kumar (2002b), Kinematic dispersion in stream net-
works: 2. Scale issues and self-similar network organization, Water
Resour. Res., 38(11), 1245, doi:10.1029/2001WR000694.

Saco, P. M., and P. Kumar (2004), Kinematic dispersion effects of hillslope
velocities, Water Resour. Res., 40, W01301, doi:10.1029/2003WR00
2024.

Schumm, S. A. (1960), The shape of alluvial channels in relation to sedi-
ment type, U.S. Geol. Surv. Prof. Pap., 352B.

Singh, V. P. (1996), Kinematic Wave Modeling in Water Resources: Sur-
face Water Hydrology, John Wiley, New York.

Smith, L. C., and T. M. Pavelsky (2008), Estimation of river discharge,
propagation speed, and hydraulic geometry from space: Lena River,
Siberia, Water Resour. Res., 44, W03427, doi:10.1029/2007WR006133.

Smith, M. B., D.-J. Seo, V. Koren, S. M. Reed, Z. Zhang, Q. Duan, F. Mor-
eda, and S. Cong (2004), The distributed model intercomparison project
(DMIP): Motivation and experiment design, J. Hydrol., 298(1–4), 4–26,
doi:10.1016/j.jhydrol.2004.03.040.

Snell, J. D., and M. Sivapalan (1994), On geomorphological dispersion in
natural catchments and the geomorphological unit hydrograph, Water
Resour. Res., 30(7), 2311–2323, doi:10.1029/94WR00537.

Sturm, T. (2001), Open Channel Hydraulics, McGraw-Hill, New York.
Tarboton, D. G., R. L. Bras, and I. Rodriguez-Iturbe (1989), Scaling and

elevation in river networks, Water Resour. Res., 25(9), 2037–2051,
doi:10.1029/WR025i009p02037.

Tortorelli, R. L. (1997), Techniques for estimating peak-streamflow fre-
quency for unregulated streams and streams regulated by small flood-
water-retarding structures in Oklahoma, U.S. Geol. Surv. Water Resour.
Invest. Rep. 97-4202.

Valiani, A., and V. Caleffi (2009). Analytical findings for power law cross-
sections: Uniform flow depth, Adv. Water Resour., 32(9), 1404–1412,
doi:10.1016/j.advwatres.2009.06.004.

van der Tak, L. D., and R. L. Bras (1990), Incorporating hillslope effects
into the geomorphological instantaneous unit hydrograph, Water Resour.
Res., 26(10), 2393–2400, doi:10.1029/WR026i010p02393.

Wang, C. T., V. K. Gupta, and E. Waymire (1981), A geomorphologic syn-
thesis of nonlinearity in surface runoff, Water Resour. Res., 17(3), 545–
554, doi:10.1029/WR017i003p00545.

Western, A. W., B. L. Finlayson, T. A. McMahon, and I. C. O’Neill (1997),
A method for characterising longitudinal irregularity in river channels,
Geomorphology, 21(1), 39–51, doi:10.1016/S0169-555X(97)00023-8.

Wilcock, D. N. (1971), Investigation into the relations between bedload
transport and channel shape, Geol. Soc. Am. Bull., 82(8), 2159–2176,
doi:10.1130/0016-7606(1971)82[2159:IITRBB]2.0.CO;2.

Woltemade, C., and K. Potter (1994), A watershed modeling analysis of flu-
vial geomorphologic influences on flood peak attenuation, Water Resour.
Res., 30(6), 1933–1942, doi:10.1029/94WR00323.

A. I. Mejia and S. M. Reed, Office of Hydrologic Development,
National Weather Service, NOAA, 1325 East-West Hwy., Silver Spring,
MD 20910, USA. (alfonso.mejia@noaa.gov)

W09518 MEJIA AND REED: ROLE OF CHANNEL AND FLOODPLAIN CROSS-SECTION GEOMETRY W09518

15 of 15


